The Weighing Process

Weighing plays a critical role in ensuring that food manufacturing facilities make safe and high-quality products. From preparing ingredients to measuring finished goods, the weighing process involves many different factors.

Always keep the weighing area clean & free of corrosive gases & dust. Avoid touching standard weights with bare hands as hand grease can affect their mass.

Weighing Scales

Whether you’re measuring ingredients for a pharmaceutical formulation, counting parts for an automotive project or checking the weight of a boxed product, accurate scales are key. Dependable scales are the foundation of a quality product and critical to customer satisfaction, profitability and compliance with government regulations.

Scales determine an unknown mass’s size by comparing it to a calibrated known quantity of mass, often by adding standard masses to one or both sides of the scale until fine balance is achieved. In a more sophisticated form, this class of weighing instrument, also known as a laboratory balance or beam balance, is equipped with a sliding mass that can be moved along a scale platform to make an immediate determination of the sample’s mass.

Unlike strain gauge scales which measure resistance or opposing force, force motor scales rely on an indicator that produces an electrical current in proportion to the weight applied to the load cell. However, this technology has a number of drawbacks that limit its usefulness at higher capacity.

Sample Containers

The weighing process requires containers that can hold the sample and allow air to circulate. Using a container that is lined or has a plastic screw-on cap can help prevent leaks. These containers are popular for soil and water samples.

The advantage of weighing to measure level or inventory is that it doesn’t require contact with the material, which is important for measuring corrosive materials or operating in a corrosive environment. In addition, weighing uses weight instead of volume to measure the material, which can eliminate measurement errors due to foaming or uneven density.

Moisture that enters the weighing system junction box can wick into the cables to each load cell, reducing the capacitance between signal lines and affecting weighing accuracy. Weighing systems that are hermetically sealed at both the strain gauge area and cable entry are better able to resist contamination.

Weighing Paper

Weighing paper is an essential tool to use when weighing powdery samples on analytical balances. It prevents the substance from gunking up the measuring pan and can increase precision by keeping the sample off of the weighing platform. VWR offers a wide variety of laboratory weighing papers in different sizes, including moisture-resistant options made from glassine.

Weighing papers are also available with a pre-printed ream weight (the number of sheets that make up a style of paper) and an international basis size conversion chart. The ream weight is used to identify the style of paper; the basis weight determines how much it weighs in pounds or grams per square meter, respectively.

A paper’s thickness is called caliper, and the higher the caliper, the thicker the paper. Heavier paper is typically sturdier, but it doesn’t necessarily have better qualities. It depends on how the paper is made and its composition. This is why it’s important to understand the interplay between paper weight and caliper.

Transfer Vessels

Crew transfer vessels are large sea-going water taxis that transport workers to and from offshore wind farms and oil platforms. They can operate dozens or even hundreds of kilometers offshore. To minimize the risk of kidnapping or ransom these vessels often feature bullet-proof pilot houses and internal passenger safe rooms.

Today, CTVs are mainly aluminium catamarans designed to carry up to 12 passengers. With 15-20 knt transit speed they can take crews to their destination in a short time. They are powered by Wartsila engines delivering optimized drive train for maximum operational reliability.

Ship to ship (STS) transfers can be carried out at sea with both vessels underway or one ship secured alongside a stationary tanker at anchor. STS can be used to transfer oil cargo, liquefied natural gas, dry bulk cargo and livestock. The latter typically include cattle ships, poultry carriers and fish trawlers. The cargo is transferred from the moored vessel to the transfer vessel using a pipeline system, and then pumped back to the moored vessel.